วันพฤหัสบดีที่ 9 กันยายน พ.ศ. 2553

เว็บคลื่น

http://www.bkw.ac.th/content/snet3/saowalak/wave/wave.htm
http://blake.prohosting.com/pstutor/physics/wave/wave_concept.html
http://th.wikipedia.org/wiki/%E0%B8%84%E0%B8%A5%E0%B8%B7%E0%B9%88%E0%B8%99
http://www.icphysics.com/modules.php?name=Content&pa=showpage&pid=54

http://www.bs.ac.th/lab2000/physicweb/sonic.htm

กัมมันตรังสี

ในปี ค.ศ. 1896 อองตวน อองรี เบ็กเคอเรล นักวิทยาศาสตร์ชาวฝรั่งเศส พบว่า เมื่อเก็บแผ่นฟิล์มถ่ายรูปที่หุ้มด้วยกระดาษสีดำไว้กับสารประกอบของยูเรเนียม ฟิล์มจะมีลักษณะเหมือนถูกแสง และเมื่อทำการทดลองกับสารประกอบของยูเรเนียมชนิดอื่นๆ ก็ได้ผลเช่นเดียวกัน จึงสรุปได้ว่าน่าจะมีรังสีแผ่ออกมาจากธาตุยูเรเนียม ดังภาพ






ภาพที่ 10 การทดลองสารกัมมันตรังสีของอองตวน อองรี เบ็กเคอเรล


ต่อมา ปีแอร์ และมารี กูรี ได้ค้นพบว่า ธาตุยูพอโลเนียม เรเดียม และทอเรียม ก็สามารถแผ่รังสีได้เช่นเดียวกัน เพราะฉะนั้นจึงสรุปได้ว่า
ธาตุกัมมันตรังสี หมายถึง ธาตุที่แผ่รังสีได้ เนื่องจากนิวเคลียสของอะตอมไม่เสถียร เป็นธาตุที่มีเลขอะตอมสูงกว่า 82
กัมมันตภาพรังสี หมายถึง ปรากฏการณ์ที่ธาตุแผ่รังสีได้เองอย่างต่อเนื่อง รังสีที่ได้จากการสลายตัว มี 3 ชนิด คือ รังสีแอลฟา รังสีบีตา และรังสีแกมมา
ในนิวเคลียสของธาตุประกอบด้วยโปรตอนซึ่งมีประจุบวกและนิวตรอนซึ่งเป็นกลางทางไฟฟ้า สัดส่วนของจำนวนโปรตอนต่อจำนวนนิวตรอนไม่เหมาะสมจนทำให้ธาตุนั้นไม่เสถียร ธาตุนั้นจึงปล่อยรังสีออกมาเพื่อปรับตัวเองให้เสถียร ซึ่งเป็นกระบวนการที่เกิดขึ้นเองตามธรรมชาติ เช่น




(ธาตุยูเรเนียม) (ธาตุทอเลียม) (อนุภาคแอลฟา)


จะเห็นได้ว่า การแผ่รังสีจะทำให้เกิดธาตุใหม่ได้ หรืออาจเป็นธาตุเดิมแต่จำนวนโปรตอนหรือนิวตรอนอาจไม่เท่ากับธาตุเดิม และธาตุกัมมันตรังสีแต่ละธาตุ มีระยะเวลาในการสลายตัวแตกต่างกันและแผ่รังสีได้แตกต่างกัน เรียกว่า ครึ่งชีวิตของธาตุ
ครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทปและสามารถใช้เปรียบเทียบอัตราการสลายตัวของธาตุกัมมันตรังสีแต่ละชนิดได้


ตารางที่ 7 ชนิดและสมบัติของรังสีบางชนิด


ชนิดของรังสี สัญลักษณ์ สมบัติ
รังสีแอลฟา
หรืออนุภาคแอลฟา หรือ เป็นนิวเคลียสของอะตอมฮีเลียม มีโปรตอนและนิวตรอนอย่างละ 2 อนุภาค มีประจุไฟฟ้า +2 มีเลขมวล 4 มีอำนาจทะลุทะลวงต่ำเพียงแค่กระดาษ อากาศที่หนาประมาณ 2-3 cm น้ำที่หนาขนาดมิลลิเมตร หรือโลหะบางๆ ก็สามารถกั้นอนุภาคแอลฟาได้
รังสีบีตา
หรืออนุภาคบีตา หรือ มีสมบัติเหมือนอิเล็กตรอน มีประจุไฟฟ้า -1 มีมวลเท่ากับอิเล็กตรอน (น้อยมาก) มีอำนาจทะลุทะลวงสูงกว่ารังสีแอลฟาประมาณ 100 เท่า สามารถผ่านแผ่นโลหะบางๆ ได้ และมีความเร็วใกล้เคียงกับความเร็วแสง
รังสีแกมมา เป็นคลื่อนแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นมาก ไม่มีประจุ ไม่มีมวล เป็นรังสีที่มีพลังงานสูง มีความเร็วเท่ากับความเร็วแสงและมีอำนาจทะลุทะลวงสูง สามารถผ่านแผ่นตะกั่วหนา 8 mm หรือแผ่นคอนกรีตหนาๆ ได้






ภาพที่ 11 อำนาจทะลุทะลวงของรีงสีต่างๆ


การเกิดปฏิกิริยาของธาตุกัมมันตรังสี
การเกิดปฏิกิริยาของธาตุกัมมันตรังสี เรียกว่า ปฏิกิริยานิวเคลียร์ ซึ่งมี 2 ประเภท คือ
1. ปฏิกิริยาฟิชชัน (Fission reaction) คือ ปฏิกิริยานิวเคลียร์ที่เกิดขึ้น เนื่องจากการยิงอนุภาคนิวตรอนเข้าไปยังนิวเคลียสของธาตุหนัก แล้วทำให้นิวเคลียร์แตกออกเป็นนิวเคลียร์ที่เล็กลงสองส่วนกับให้อนุภาคนิวตรอน 2-3 อนุภาค และคายพลังงานมหาศาลออกมา ถ้าไม่สามารถควบคุมปฏิกิริยาได้อาจเกิดการระเบิดอย่างรุนแรงที่เรียกว่า ลูกระเบิดปรมาณู (Atomic bomb) เพื่อควบคุมปฏิกิริยาลูกโซ่ไม่ให้เกิดรุนแรงนักวิทยาศาสตร์จึงได้สร้างเตาปฏิกรณ์ปรมาณูเพื่อใช้ในการผลิตกระแสไฟฟ้า






ภาพที่ 12 การเกิดปฏิกิริยาฟิชชัน


2. ปฏิกิริยาฟิวชัน (Fussion reaction) คือ ปฏิกิริยานิวเคลียร์ที่นิวเคลียสของธาตุเบาหลอมรวมกันเข้าเป็นนิวเคลียสที่หนักกว่า และมีการคายความร้อนออกมาจำนวนมหาศาลและมากกว่าปฏิกิริยาฟิชชันเสียอีก ปฏิกิริยาฟิวชันที่รู้จักกันดี คือ ปฏิกิริยาระเบิดไฮโดรเจน (Hydrogen bomb) ดังภาพ






ภาพที่ 13 การเกิดปฏิกิริยาฟิวชัน


ประโยชน์จากการใช้ธาตุกัมมันตรังสี
1. ด้านธรณีวิทยา การใช้คาร์บอน-14 (C-14) คำนวณหาอายุของวัตถุโบราณ
2. ด้านการแพทย์ ใช้ไอโอดีน-131 (I-131) ในการติดตามเพื่อศึกษาความผิดปกติของต่อมไธรอยด์ โคบอลต์-60 (Co-60) และเรเดียม-226 (Ra-226) ใช้รักษาโรคมะเร็ง
3. ด้านเกษตรกรรม ใช้ฟอสฟอรัส 32 (P-32) ศึกษาความต้องการปุ๋ยของพืช ปรับปรุงเมล็ดพันธุ์ที่ต้องการ และใช้โพแทสเซียม-32 (K–32) ในการหาอัตราการดูดซึมของต้นไม้
4. ด้านอุตสาหกรรม ใช้ธาตุกัมมันตรังสีตรวจหารอยตำหนิ เช่น รอยร้าวของโลหะหรือท่อขนส่งของเหลว ใช้ธาตุกัมมันตรังสีในการ ตรวจสอบและควบคุมความหนาของวัตถุ ใช้รังสีฉายบนอัญมณีเพื่อให้มีสีสันสวยงาม
5. ด้านการถนอมอาหาร ใช้รังสีแกมมาของธาตุโคบอลต์-60 (Co–60) ปริมาณที่พอเหมาะใช้ทำลายแบคทีเรียในอาหาร จึงช่วยให้เก็บรักษาอาหารไว้ได้นานขึ้น
6. ด้านพลังงาน มีการใช้พลังงานความร้อนที่ได้จากปฏิกิริยานิวเคลียร์ในเตาปฏิกรณ์ปรมาณูของยูเรีเนียม-238 (U-238) ต้มน้ำให้กลายเป็นไอ แล้วผ่านไอน้ำไปหมุนกังหัน เพื่อผลิตกระแสไฟฟ้า




เอ็กซ์-เรย์ อาบรังสีเพื่อถนอมอาหาร โรงงานไฟฟ้านิวเคลียร์


ภาพที่ 14 ตัวอย่างประโยชน์จากธาตุกัมมันตรังสี


ตารางที่ 8 แสดงธาตุและไอโซโทป


ธาตุ/ไอโซโทป
ครึ่งชีวิต
แบบการสลายตัว
ประโยชน์


Tc -99
6 ชั่วโมง






C-14
5,760 ปี
บีตา
หาอายุวัตถุโบราณ


Co-60
5.26 ปี
แกมมา
รักษามะเร็ง


Au-198
2.7 วัน
บีตา แกมมา
วินิจฉัยตับ


I-125
60 วัน
แกมมา
หาปริมาณเลือด


I-131
8.07 วัน
บีตา แกมมา
วินิจฉัยอวัยวะ


P-32
14.3 วัน
บีตา
รักษามะเร็ง


Pu-239
24,000 ปี
แอลฟา แกมมา
พลังงาน


K-40
1x109 ปี
บีตา
หาอายุหิน


U-238
4.5x109 ปี
แอลฟา แกมมา
วัตถุเริมต้นให้ Pu-239


U-235
7.1x109 ปี
แอลฟา แกมมา
รักษามะเร็ง


Cl-36
4x105 ปี






Po-216
0.16 วินาที






Ra-226
1,600 ปี
แอลฟา แกมมา
รักษามะเร็ง




โทษของธาตุกัมมันตรังสี
1. ถ้าร่างกายได้รับจะทำให้โมเลกุลภายในเซลล์เกิดการเปลี่ยนแปลงไม่สามารถทำงานตามปกติได้ ถ้าเป็นเซลล์ที่เกี่ยวข้องกับการถ่ายทอดลักษณะพันธุกรรมก็จะเกิดการผ่าเหล่า โดยเฉพาะเซลล์สืบพันธุ์เมื่อเข้าไปในร่างกายจะไปสะสมในกระดูก
2. ส่วนผลที่ทำให้เกิดความป่วยไข้จากรังสี เมื่ออวัยวะส่วนใดส่วนหนึ่งของร่างกายได้รับรังสี โมเลกุลของธาตุต่างๆ ที่ประกอบเป็นเซลล์จะแตกตัว ทำให้เกิดอาการป่วยไข้และเกิดมะเร็งได้

วันพฤหัสบดีที่ 2 กันยายน พ.ศ. 2553

รังสีแกมมา (gamma ray)

รังสีแกมมา ( gamma ray) คือคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่ง ที่มีช่วงความยาวคลื่นสั้นกว่ารังสีเอกซ์ (X-ray) ที่มีความยาวคลื่นอยู่ในช่วง 10-13 ถึง 10-7 หรือก็คือคลื่นที่มีความยาวคลื่นน้อยกว่า 10-13 นั่นเอง การที่ความยาวคลื่นสั้นนั้น ย่อมหมายถึงความถี่ที่สูง และพลังงานที่สูงตามไปด้วย ดังนั้นรังสีแกมมาถือเป็นคลื่นแม่เหล็กไฟฟ้าที่มีพลังงานสูงที่สุดในบรรดาคลื่นแม่เหล็กไฟฟ้าชนิดต่าง ๆ ที่เหลือทั้งหมดการค้นพบ
การค้นพบรังสีแกมมา โดย พอล วิลลาร์ด (Paul Villard) นักฟิสิกส์ฝรั่งเศส พลอ วิลลาร์ด ค้นพบรังสีแกมมาจากการศึกษากัมมันตภาพรังสีที่ออกมาจากยูเรเนียม ซึ่งถูกค้นพบมาก่อนแล้วว่าบางส่วนจะเบนไปทางหนึ่ง เมื่อผ่านสนามแม่เหล็กบางส่วนจะเบนไปอีกทางหนึ่ง กัมมันตภาพรังสีทั้งสองประเภทนี้ คือ รังสีแอลฟา และรังสีบีตา


รังสีแกมมากับปฏิกิริยานิวเคลียร์
ปฏิกิริยานิวเคลียร์ คือปฏิกิริยาที่เกิดความเปลี่ยนแปลงกับนิวเคลียสของอะตอม ไม่ว่าจะเป็นการเพิ่มหรือการลด โปรตอนหรือนิวตรอนในนิวเคลียสของอะตอม เช่นปฏิกิริยานี้




จะเห็นได้ว่าโซเดียม ได้มีการรับนิวตรอนเข้าไป เมื่อนิวเคลียสเกิดความไม่เสถียร จึงเกิดการคายพลังงานออกมา และพลังงานที่คายออกมานั้น เมื่ออยู่ในรูปคลื่นแม่เหล็กไฟฟ้าแล้ว มันก็คือรังสีแกมมานั่นเอง


โดยทั่วไป รังสีแกมมาที่แผ่ออกมาจากนิวเคลียสของอะตอมที่ไม่เสถียรนั้น มักจะมีค่าพลังงานที่แตกต่างกันไปตามแต่ละชนิดของไอโซโทป ซึ่งถือเป็นคุณลักษณะประจำไอโซโทปนั้น ๆ


การประยุกต์ใช้งาน
ในปัจจุบันถึงแม้ว่ารังสีแกมมาจะไม่เป็นที่รู้จักและใช้งานอย่างแพร่หลายทั่วไปในปัจจุบัน เหมือนอย่างคลื่นแม่เหล็กไฟฟ้าชนิดอื่น ๆ ที่คนทั่วไปมักรู้จักกันดี เช่น คลื่นวิทยุ คลื่นไมโครเวฟ หรือแม้แต่รังสีเอกซ์ ที่มีความคล้ายคลึงกับรังสีแกมมาที่สุดแล้ว เนื่องจากการใช้ประโยชน์ของรังสีแกมมา ไม่ค่อยได้เข้ามามีบทบาทในชีวิตประจำวันของผู้คนเท่าไร ส่วนใหญ่มักจะใช้ในงานวิจัยและอุตสาหกรรมอื่น ๆ ที่ไม่ค่อยเป็นที่รู้จักอย่างแพร่หลาย แต่คุณสมบัติพิเศษของมันในเรื่องของพลังงานที่สูงกว่าคลื่นชนิดอื่น ๆ จึงทำให้สามารถใช้ประโยชน์ได้ในงานต่าง ๆ ดังต่อไปนี้
เทคโนโลยีพันธุกรรม (Genetic Technology)
รังสีแกมมาใช้ในการเหนี่ยวนำให้เกิดการกลายพันธุ์ในสิ่งมีชีวิต เพราะมันมีพลังงานสูง ก่อให้เกิดการเปลี่ยนแปลงกับดีเอ็นเอ โดยปกติสารพันธุกรรมของสิ่งมีชีวิตมีหน้าที่ควบคุมลักษณะต่าง ๆ ของสิ่งมีชีวิต เมื่อเซลล์ที่มีการเปลี่ยนแปลงสารพันธุกรรมจะทำให้เกิดหน่วยพันธุกรรมที่เปลี่ยนแปลงไป เช่น สีของดอก รูปลักษณะของลำต้น ใบ เป็นต้น
กล้องโทรทัศน์รังสีแกมมา
เหตุการณ์บางอย่างที่เกิดขึ้นบนเอกภพเช่นการชนกันของดวงดาวหรือหลุมดำ การระเบิดจะก่อให้เกิดรังสีแกมมาที่มีพลังงานสูงมากเดินทางข้ามอวกาศมายังโลกของเรา เนื่องจากชั้นบรรยากาศจะกรองเอารังสีแกมมาจากอวกาศออกไปจนหมดสิ้น รังสีแกมมาเหล่านั้นจึงไม่สามารถทำอันตรายต่อสิ่งมีชีวิตบนโลกนี้ได้ แต่ก็ทำให้การศึกษารังสีแกมมาที่เกิดจากเหตุการณ์บนอวกาศไม่สามารถทำได้เช่นกัน จึงมีความจำเป็นที่จะต้องศึกษารังสีแกมมาที่มาจากอวกาศเหนือชั้นบรรยากาศเท่านั้น ดังนั้นกล้องโทรทัศน์รังสีแกมมาจำเป็นที่จะต้องติดตั้งอยู่บนดาวเทียมเท่านั้น
 การถนอมอาหาร
เทคโนโลยีการถนอมอาหารนั้นมีหลากหลายวิธี โดยสาระสำคัญทั้งหมดอยู่ที่การพยายามฆ่าเชื้อโรคไปจากอาหารและ/หรือป้องกันไม่ให้เชื้อโรคเจริญเติบโตอยู่ได้ โดยทั่วไปแล้วการใช้ความร้อนเป็นวิธีที่ธรรมดาสามัญและนับได้ว่าเป็นวิธีที่ค่อนข้างได้ผลมาก หากเพียงแต่การใช้ความร้อน เป็นการบีบบังคับว่าอาหารนั้นจำเป็นที่จะต้องสุกจึงจะถนอมไว้ได้ เพื่อตัดปัญหานี้ การใช้ฉายรังสีจึงเป็นทางเลือกที่ดีกว่า


เนื่องจากการฉายรังสีที่มีพลังงานสูง เช่นรังสีแกมมานี้ จะไปทำลายเซลล์สิ่งมีชีวิต ร่วมไปถึงสารพันธุกรรมต่าง ๆ ทำให้เซลล์สิ่งมีชีวิตต่าง ๆ ตาย โดยที่ไม่กระทบกระเทือนกับอาหาร ถึงแม้ว่าการดูดซึมรังสีของอาหารจะทำให้เกิดความร้อนขึ้นมาเล็กน้อย แต่สิ่งนั้นก็ก่อให้เกิดความผิดเพี้ยนของรสชาติอาหารไปเพียงเล็กน้อยเท่านั้น


อย่างไรก็ตามถึงแม้ว่าการฉายรังสีดูเหมือนจะเป็นหนทางที่ดีในการถนอมอาหาร แต่กลุ่มผู้บริโภคบางส่วนก็มีแนวคิดที่ว่าการฉายรังสีอาจทำให้เกิดปฏิกิริยาบางอย่างกับอาหารแล้วทำให้เกิดสารที่เป็นพิษต่อร่างกายได้ จึงทำให้การใช้เทคโนโลยีการฉายรังสีไม่เป็นที่แพร่หลายเท่าใดนัก